On a conormal module of smooth set theoretic complete intersections

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SET-THEORETIC COMPLETE INTERSECTIONS IN CHARACTERISTIC p

We describe a class of toric varieties which are set-theoretic complete intersections only over fields of one positive characteristic p.

متن کامل

On toric varieties which are almost set-theoretic complete intersections

We describe a class of affine toric varieties V that are set-theoretically minimally defined by codimV + 1 binomial equations over fields of any characteristic.

متن کامل

On Binomial Set-Theoretic Complete Intersections in Characteristic p

Using arithmetic conditions on affine semigroups we prove that for a simplicial toric variety of codimension 2 the property of being a set-theoretic complete intersection on binomials in characteristic p holds either for all primes p, or for no prime p, or for exactly one prime p.

متن کامل

Almost set-theoretic complete intersections in characteristic zero

We present a class of toric varieties V which, over any algebraically closed field of characteristic zero, are defined by codim V +1 binomial equations .

متن کامل

H$^*$-condition on the set of submodules of a module

In this work, we introduce $H^*$-condition on the set of submodules of a module. Let $M$ be a module. We say $M$ satisfies $H^*$ provided that for every submodule $N$ of $M$, there is a direct summand$D$ of $M$ such that $(N+D)/N$ and $(N+D)/D$ are cosingular. We show that over a right perfect right $GV$-ring,a homomorphic image of a $H^*$ duo module satisfies $H^*$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1986

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1986-0837812-3